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THE MINIMUM INDUCED DRAG OF AEROFOILS.
‘ By Max M. Muxk.

T . P INTRODUCTION.

- The following paper is a dissertation originally presented by the author to the University
of Goettingen. : It was intended principally for the use of mathematicians and physicists. The
author is pleased to note that the paper has aroused interest in other circles, to the end that
the National Advisory Committee for Aeronautics will make it available to a larger circle in
America. The following introduction has been added in order to first acquaint the reader
with the essence of the paper. _ ,

In the following development all results are obtained by integrating some simple expressions

or relations. For our purposes it is sufficient, indeed, to prove the results for a pair of small

- elements, 'The qualities deslt with are integrable, since, under the assumptions we are allowed

to make, they can not be affected by integrating. We have to consider only the relations
between any two lifting elementa and to add the effects. That is to say, in the process of inte- )

grating each element occurs twice—first, as an element producing an effect, and, second, as an

-element experiencing an effect. In consequence of this the symbols expressing the integration
look somewhat confusing, and they require so much space in the mathematical expression that
they are apt to divert the reader’s attention from their real meaning. We have to proceed up
to three dimensional problems. Each element has to be denoted twice (by a Latin letter and
by a Greek letter), occurring twice in a different connection. The integral, therefore, is sixfold,
gix symbols of integration standing together and, accordingly, six differentials (always the same)
standing at the end of the expression, requiring almost the fourth part of the line. The meaning
of this voluminous group of symbols, however, is not more complicated and not less elementary
than a single integral or even than a simple addition.

: In section 1 we consider one aerofoil shaped like a straight line and ask how all lifting
elements, which we assume to be of equal intensity, must be arranged on this line in order to
offer the least drag. o ' ‘

"I the distribution is the best one, the drag can not be decreased or increased by transferring
one lifting element from its old position (g) to some new position (3). For then either the
resulting distribution would be improved by this transfer, and therefore was not best before, or
the transfer of an element from () to () would have this effect. Now, the share of one element

in the drag is composed of two parts. It takes share in producing & downwash in the neighbor-

.. hood of the other lifting elements and, in consequence, a change in their drag. It has itself a

‘drag, being situated in the downwash produced by the other elements. L
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..+ Considering only two elements, Fig. 1 shows that in the case of the lifting straight line the
two-downwashes, each produced by oné element in the neighborhood of the other, are equal.
For this reason the two drags of the two elements each produced by the other are equal, too,

and hence the two parts of the entire drag: of the wings due to one element.. The entire drag
v ‘ L6 8 L
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o4 REPORT NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS.
produced by one element has twice the value as the drag of that element resulting from the
downwash in its environs. Hence, the entire drag due to one element is unchanged when the
element is transferred from one situation to a new one of the same downwash, and the distribu- -
tion is the best only if the downwash is constant over the whole wing.
. Insections 2 to 6 it is shown that the two parts of the drag change by the same value in
el other cases, too. If the elements are situated in the same transverse plane, the two parts are
equel A gls.nee at Fig. 2 shows that the downwash produeed by (l) et 2), (3, (4), and (5)

N
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is eqnal. But then it also equa.ls the downwash due to ), say, produced at (1). This holds
" true even.for the component. of the downwash in the direction of the lift if the elements are nor-
mn.l to eaehother (Flg 3) for this component is proporhonal.x.y,'r' aecordmg to the eymbols
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of the figure. Hence, it is proved for lift of any inclination, honzontal and vert.xcal e'lamente
bemg ‘able, by eombmanon, to produce lift in any direction., “ ' ‘

~_ There remains only the question whether the two pa.rte of the d.rag are also equal xf the
‘elements 3 are mtuate& one behind the other—that is to say, in different longltudmal positions.
They. are not' ‘but their sum. is independent of the longxtudmal distance apart. To prove
, thxs add in Fig 4 to the hftmg element (2) 8 second inverse hftmg element (3) w1th inverge
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Linear longltudma] vortlces in the inverse d1rectxon The reader observes that the tra.nsveme
‘vartices (2) and (3) neutralize each other, the longxtudmal linear vortices, however, have the
same sign, and all. four vortiees form a pair of vortices runmng from infinity to infinity. The
drag, produced by ‘the combination of (1).and this pair, is obviously independent of the longi-
tudinal positions of (1) and (2). . But the added element (3) has not changed the drag, faor (1)
and (3) are situated symmetncally and produce the same mytual downwash. The direction

of the lift, however, is mverse, and therefore the two drags have the i inverse slgn, n.nd their sum

is zero. vt b

If the two Lifting elements are perpendmu]ar to onch other (chapter 5), o similar bmf can
be given.

Sections 6 and 7 contain the conclusions. The condition for & minimum dreg does not
depend upon the longitudinal coordinates, and in order to obtain it the downwash must be
assumed to be canstant -at «ll points in a transverse plane of .a corresponding system of ‘aero-
foils. - This is not surprising; the wings act like two dimensional objects-accelerating the air
passing in an infinite transverse plane at a particular moment. Therefore the calculation
ieads to the consideration of the two dimensional - ﬂow about ‘the projection of the wings on a
transverse plane.
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. MINIMUM INDUCED DRAG OF AEROFOILS. : 5

Section 8 gives the connection between the theory in perfect fluids and the phenomenon
in true air. It is this connection that allows the application of the results to practical questions.

" 1. THE LIFTING STRAIGHT LINE.

A system of aerofoils moving in an incompressible and frictionless fluid has a drag (in the
direction of its motion) if there is any lift (perpendicular to the direction of its motion). The
magnitude of this drag depends upon the distribution of the lift over the surface of the aerofoils.
‘Although the dimensions of the given system of aerofoils may remain unchanged, the distribu-
tion of the lift can be radically altered by changes in details, such as the aerofoil section or the
angle of attack. The purpose of the investigation which is given in the following pages is to
determine (a) the distribution of lift which produces the least drag, and (b) the magnitude of this

Let us first consider a single aerofoil of such dimensions that it may be referred to with
sufficient exactness as a lifting straight line, which is at right angles to the direction of its flight.
The length or span of this line may be denoted by I. Let the line coincide with the horizontal,
‘or z axis of a rectangular system of coordinates having its origin at the center of the aerofoil.
The density of the lift

' dA

e e A P ' . , . (D

where A, the entire lift from the left end of the wing up to the point z, is generally a function of
£ and may be denoted by f (z). Let the velocity of flight be v,

" The modern theory of flight! allows the entire drag to be expressed as & definite double

integral, if certain simplifying assumptions are made. In order to find this integral, it is.neces-

. sary to determine the intensity of the longitudinal vortices which run. from any lifting element

to infinity in a direction opposite to the direction of flight. These vortices are generally

distributed continuously along the whole aerofoil, and their intensity per unit length of the
aerofoil is TS E : : .

;1 dA’

M=5s & | @

 where p is the density of the fluid. Now, for each lifting element dz, we shall calculate the down-

wash 1w, which, in accordance with the law of Biot-Savart, is produced at it by all the longi-

tudinal vortices. A single vortex, beginning at the point z, produces at the point z=§ the

downwash
Cdpm i aar - AL
» . dw-m " aA -z 3)
Thgrefore the entire downwash at the point § is
T ‘iV! N e - e “.‘.’l e .
1 (44 1 o
W == ———4""’0‘[7—1— . F_—:cdz \ (4)
, . -7 )

The integrzition is to be performed along the aerofoil; and the principal value of the integral is
to be taken at the point z=¢. This rule also applies to all of the following integrals. Henoe it
follows that the drag according to the equation . Coe T
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. 3 Bes L. Prandtl, Traghiigeitheorie, I. Mitteilung. Nachrichten der Ges, d. Wiss. su GOttingen, 1918.
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f' here algmﬁes the denvatwe of f thh respect to z or E The entare hft is represented by

Henoe the solutlon of the problem to determme the best dxstnbutlon of hft dependn upon
: the determmatwn of the functlon f #o that the double mtegral . .

Yol : L :;'1“: "'-“~ . +' | :: ?' | -'.‘.: o : ‘ ‘
,:,_;, ) REoNS T TR

shall have & value as small as possible; while at the same time the value of the simpié integral -

J,-Tr (z)dz‘-'@m't;;s.ii L e e @)

N ' [P L. PR o s L A

uﬁxed

B O Theﬁrst atep bowu'ds the soluhon of thm problamu to Soun the ﬁrst va.ruhon of J, ‘
: o " q::;': ,‘:;-.5,.-,'“'! : ‘71!' o el ..."H., ool h
L {U(z)dz f—-de Taf’(e)dsf SRR ....(-10)

s "?. ’ . L —‘ - (“»; . :

J :'The socond integral on the right side of (10) can be reduced o t.he ﬁrst. By excha.ngmg t.he‘; SRS

symbols z and ¢ and by partial mtegratxon with respect toz, oonsxdermg I (E) as the mtegmble' '
factor, there is obtained

PR L et .4..,»‘

o A
f for @ éﬂ_—?dz]e - f 6f(=)dz jz o an
-+ ¥ TR T ‘; T

The second member disappears since f =0 at theé lnmts of mteéxntwn’ Fnrther, the nght
_ hand pu-t of (11)

st twmend, »:‘,fi [T Er 'y"’.ff“jﬁ.i- o z"'e

+ .
pRSe 341 E BELESR St I ST T PR

. W,‘l = [N EERX ST
upon substitution of t.he new va.m.bles z md t-z~£ for z a.nd E, u tnnaformed mto - ":-:f"'

Tf(z _y dt

Ol!nxh mmtrm,thmmldheinﬂﬂhvdommnthmpdnh .
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- MINIMUM INDUCED DRAG OF AEROFOILS, 7
Now - : o .
S S TN i
L - d —- ‘ f 9 f -9 P _
e | asff(zt t)d,_,(zz)_ ( %)_‘_J'f(:i 0z
- Csbg R A} .z,+2 g
or, since f &isappem at the limits of integration,
ce
d {flz—1) f(z—1)
EET Y dt
o , ‘ C L g o s+
. which, upon the replacemént of the original v;xfiablés, becomes
+4 -
. ‘ @ ..
s
8o that, finally, R
b aE e .
f {af' ®dt f {f_—z—ldz}- f{a f@dz f EL_%)JE} (12)
e |
Substituting this in (10).there finally results ~ : . -3 Caco oo sk
. " . . . ‘v’ ‘7‘ ’ ‘; o " . L D 7
L S U,—zT&f,(z)dz 'g_%df (13)
. LI . -% -.% .

From which the condition for the minimum ar/nount‘of drag, talnng into consideration the
second condition (8),1s- - s oL R : . ,
’ Dy e +2L . »
@ g -
ff_zdf+)‘-0 (14)
or, when equation (4) is taken into consideration
e ‘ e T e apee ¢ONISY: =g cooe (15)

"' The necessary condition for the minimum of drag for a lifting straight line is that the down-
wash produced by the longitudinal vortices be constant along the entire line.
" That this necessary consideration is also sufficient results from the obvious meaning of
the second variation, which represents the infinitesimal drag produced by the variation of the
~ Lift if it alone is acting, and therefore it is always greater than zero
*a st 7t 2 PARALLEL LIFTING ELEMENTS LYING IN A TRANSVERSE PLANE,
%" The method just developed may be applied at once to problems of & more general nature.
If, instead of a single aerofoil, there are several aerofoils in the same straight line perpen-
dicular to the direction of flight, only the limits of integration are changed in the development.
The integration in such cases is to be performed along all of the aerofoils. However, this is
‘nonessentigl for all of the equations and therefore the condition for the minimum drag (equa-

tion 15) applies to this entire system of aerofoils. .

-

caveTa e ;

¥ g . " e ms = pot - ' =,

RTONEIUING SO 13 -SRI - RN TR ORI S P T P I A et PUR OO . . I, .
e LT T IR R SR S ~



S84 1 R

-8 REPORT NATIONAL ADVISO'E‘f’ COMMTITTEE FOR AE]ONAUTIOS.

Let us now discard the condition that all of the lifting lines are lying in the same straight
line, but retain, however, the condition that they are parallel to each other, perpendicular to
the line of flight as before, and that they are all lying in a plane perpendicular to the line of
flight. Let the height of any lifting line be designated by z or . Equation (3) transforms into

beginning on the lifting element at the point §: o
B R Al = s = SR

" The expression, which must now be_"a mimmun;, m ‘ § i

- & similar one which gives the downwash produced at the point z, 2 by the longitudinal vortex. |

- e et T R PN
P s e O e e s BT

Ay

e[ flase o] - 160 gafimpetds 6w

with the unchanged secondary condition L _ . o
J;-ff(zfrfz)}li-oonét. i R ' (9a)

These integrals are to be taken over all of the serofoils.
This new problem may be treated in the same manner as the first.

B ’g,i
et -

M PR ‘!",:‘P'
w
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is always to be substituted for 7. It may be shown -that :this ‘substitution does-sot
affect the correctness of equations (10) to (15). Therefore o

o pheed e T g
is again obtained as the necessary condition for the minimum of the entire dmg et
transverse plane, the individual aerofoils, like venetian blinds, lie so -closely together sthat
they may be considered es a continuous lifting part of a plane. Including all cases which
have been considered so far, the condition for & minimum of drag can be stated: ,

Let the dimensions of a system of aerofoils be given, those in the direction of flight being small
in comparison with those in other directions. Let the lift be everywhere directed vertically. Under
these conditions, the downwash produced by the longitudinal vortices must be uniform at all points
on the aerofoils in order that there may be @ minimum of drag for o -given tolal diftesi o v 1o my
et 3. THREE DIMENSIONAL PARALLEL LIFTING ELEMENTS. .

- -+ The three-dimensional problem may be based upon the two-dimensional one. Let now
the dimensions in the direetion of flight be considerable and let the lifting elements be dis-

tributed in space in any manner. Let y or 4 be the coordinates of any point in the direc-

tion of flight.. .For the time being, all lifting forces are assumed to be vertical. . s e
The calculation of the density of drag for this case is somewhst.mare complicated than in
the preceding cases. Consideration must be given not only to the longitudinal vortices, which
are treated as before, but also to the transverse vortices which run pérpendicular to the lift at
any point and to the direction of flight. Their intensity at any point where there is a lifting
element s - 4 ;- . .

O

. . r=-A4 u,.p,f(z:rl;z)'vw . ’; )
Theé density of drag, W now has two components, W, and W,, the first being due to the trans-
verse vortices and the second to the longitudinal vortices. P e T e

Lo

>:"* Finally, this slso holds true for the limiting ease in which, over a limited portion af.the
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MINIMUM INDUCED DBAG OF AEROFOILS. 9
 For the solution of the present problem only the total drag of all lifting elements
| W=[ Wiz

* is to be considered. In the first place it will be shown that the integral of those parts of the
density resulting from the transverse vortices

f -f W, dz

does not contribute to the total drag. A small element of one transverse vortex of the length dx
at the pomt. (=, 9, 2) produces at the pomt (¢, #, ) the downwash

dw

4"'Pl’e _}!f (= ¥, 2)- dz | | (18)

where ‘
r’-(£ 2)’+(n y)’+(r -2

Therefore

AT fff(z,y,z)f(e.mr)" 1Y g amn

This integration is to be extended over all the aerofoils. It is possible to write this expression
in such a manner that it holds for a continuous distribution of lift over parts of surfaces or in
space. This is true, moreover, for most of the expressions in this paper. Now, exchanging the
variables z, y, z, for ¢, #, {, in equation (17) does not change the value of the integral, since the
~ symbols for the variables have no influence on the value of a definite integral. On the other
~ hand, the factor (11 —y), and therefore the integral also, changes its sign. Hence

- W= — W, =0 (18)
W= W, ‘ o 9)

ﬂercfore the entire drag may be calculated without taking into consideration the transverse
vortices,
The method of calculating the eﬂ'ect of the longitudinal vortices can be greatly simplified.
" At the point (¢, #, ¢) that part of the density of drag resulting from a longxtudmal vortex begin-

ning at the point (z, y, 2) is

end as stated,

| W, '.,.‘l—:p f fendf @y v (20)
where ‘ ‘ o ‘ ’ '
' f'-ar,fr resp. agf
and o .
IE ’ds,t'-(f x)’+(n-o)’+(f-2)’ S (21)
Theentuedragne : S g o ; :
W‘f“’"’“ fff(e.mr)f'(z,y,zwdedz )

. Now, in the double integral (22) the vansbles z,¥, zmay be exchanged with £, ;‘, as before,
“without affecting the value of the definite integral. Partial integration may then be performed
thce, ﬁrst thh respect to f and then w1th respect toz. The substltutlon results in

. W-_fff(z:!h?)f' (E””r) ¢d2d£ T K : (23)

e e 4
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obt.ame rom y upon the exchange of vanables 1ts Va'iue 18 therefore
n E 0\: o .
‘ W'— t' = ds; 7- - z)’+(s y)’+(r—z)’ - (24)
"'{A-i’i to w3t o s 13 g m ettt ataetie vt SEwW % anaie bond end ul . besnbicnes wd ot xd

e awrnyesnad 41 ane e Tl e

L When partially mtegr&tmg with respect to df’ the mtegr able factor o (E’ L

»

~~):Jl‘g{4)1"* ."l r»J'" et um fff (E; '?P f.)ldeﬁﬁf (2:, y!h ?;% TR uu-b b w.m:' fgg:s)

: 'f‘*‘s SRAHERN VR ) e ST Ts (SR AL URSIR VI TR 1136
In the subsequent partlal mtegrat.mn mth respect to dz, the mtegmble factor is EE \P -—Z \(/
(XY o At oA ar ” .
’ ’ » ’ " ‘{ 4 )
W= _'—_J.ff (Es 'l: l’) ,f’ (x; y, Z) \"dxdf ‘ - ‘<"w(26)
Fmally, by addition of (22) a.nd (26) t.here is obtamed S e d
-y r. ! 2 L ‘H )
2W-c% f f 7 G r)f' iR G dsde @)
ooty Sl ity et ‘95.',.’;u: N R R TIPS e W P B L PSS S R

i - -H .4 may now be ‘substituted in ("4) for the variable of mtegratxon 8.  Thent cha.nges to
1, a.nd with the exceptgon Qf the sxgn t.he mbegmnd in (21) a.grees with the resultmg one m (22)

‘)A‘f})l‘,-. L5 LIVI RV I I

r...t & '\lf' A e g .i': o ’!- ! : 'leI {0y R e LAY "nf’ LIRS
o Jms]{ A e ¢-~—*—fﬁ-—-§dl e r:ws! I»r\ S g o (28)
e . ;o _
_ ‘fu)bt.mctmg (28) from (21) there results ﬁnally ) X ﬁ L S S DU LT P
i R R . . '
’; mmﬂn& J\X yepit pﬁhiv By aen i e ¢__1_J'E‘ ds. M \, Bt \;miw 'h 5% u‘."y iy (29)
» e ; : TR T
.!rn?,h i dl STald »v gen et Seeibui o b ads d o geslls .9’;.}':|1w» n)‘n AT TIN &

" Hencs, 4 — and. therefore the entire right Slde qt. equata,on (22) is seen to.be mdapelndent pf t,he
longitudinal coordinates y of the lifting elements. -
Therefore the entire resistance of a three-dimensional system of aerqfoils wzth paralkl hft‘mg
- elements does not depend wpon the longitudinal pomtwrw of the lzftmg elements.
4. LIFTING ELEMENTS ARRANGED IN ANY DIBECTIONS IN A TRANSVERSE PLANE.

» 10 'b

The problem considered in sectlon 2 can also ‘be generalized in another way. For the present
the condition that all lifting elements Be in one transverse plane may remain. However, they
need no longer be parallel, and the lift may be due to not only a great number of infinitesimal

lifts dA but also to similar transverse forces dB. In the first place let the direction of all lifting
'lements be arbitrary, but such that there is 4 mirimum ag, "and let this direction be an
unknown quantity to be determined.

In the present problem it is desirable to consider a continuous distribution of 1t dver given
-areas instead of lines.- Thg last case can be dedYCfd from. the ﬁrst Aat eny time by passing to
" the limit. -

. Let A'= j(:c, z) be the densxty of the vertical Lift per unit area, and B’ = F(z, 2) the dens)ty’
of the Tateral force per unit area. The lateral’ force is considered positivé ‘Nvheh' act.mg in the
’positive dlrectlon_pf ‘the X -a.xxs Then the deﬂéity of ‘the’ transverse vorbzces “has' the'coin-

oA LR

TR T I T TS I I VIR A T By LI
ponents v—.} and —t—)_p B' The denslty of the longltudma.l vortex is the dlvergence of the
(ko - ) ‘ '
dens:ty of the transversa.l vortex, or —— dBj \The longltudmal vortxc_es begmmng

-
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‘at therpomt {z, 2)- therefore produce at the pomt (£;%) the: downwash and. ths ttensverse velocity
PR E e L e Yoo oMLY bapre b ‘«/ P A TR S (O P B NTTIr
1 dA' dB’ B
dw 411Iop )d,a . . vt (3b)
’ 1 /d4’ 4B’ g e
- . z—¢ BEL
. W= e \dz 2 )‘?”dz = ' (3e)
Accordmg to the above, the denslty of the drag is S el ks b e e i
‘(-‘- Hudiiiedee, v il b ul _‘ sl b Taliitie ol <20 (1 ,_,fli!ji;? I I PRt ¥
. H » (34 3 . 1} FRE%4) R T, BT
SATHTIAT. d,“ i iy uty I dW—A'wdxd'{-‘B’“dxd AL nier o u: z{ | _(5b‘)

Wxth these symbols there results ‘for the to):al drag the expressxon

1 Do

iy 02 iy b Aivee i v it ol ey e T3 SRR ST URURTUEE SURNPRIOY

- ’“’ T f"czz}fm}f fdxa;m- f f [[# W)F(m_mzagd;;, o

fffff' (<, 2) F (¢, i’ ) r’r dzdszdg‘ fff f F (z2)f & 3-) d:rdzusdg'}

A]l of these integrals are to be taken over:all of the lifting surfaces. Now the first two
-integrals have forms corresponding to the integral in (8),.and therefore. there is a _possibility of
substxtutmg {32) for these. . A similar relation also holds for the last two: mtegrals For 'exam-
ple, the vsrnmon of thethlrdmtevra.lxs MR et T T

w—-—f TATGRIR T MUy 0
s f]’f 7 b Py Fandittars

oA gl e g i e 'fm 4 y‘_.{“:._,"{‘- ST
S ff [ f[or @ F (60 238 +f’ G 6?’(&{) ededir, "

Now in the first. term on the right-hand side. the va.rmbles 4 and z may be exchanged with £
ull: {. It may then be partmlly mtegrated with respeet. to JE, t,he mtemble factor bemg ar ).
This gives - :

10'“1! !!“!

i

f f f f B e G m dzdzd§d;==— f f f f 8f (s,r) dQF(Z,z) = rdxdzdgd;

sfizata’ el et el P SRRSO I TR I “

This may be partxal]y mtegrated mth respect to (fz the mteorable factor bemv o
L S DS B N t P ¢ i

Nk .
o f f f f ¥ ("’)F “")*z_,; d“‘dzdf"f =-f f ﬁﬁ%alrt‘ @) F dadededs (33

,,,,,

second term of the variation of the fourth integral of this equatlon In a similar. manner .the
" two other terms may be transformed into each other. TIt,is therefore demonstrated that the

variation of t.he entire dra.g may be written.- - o7 M Gy
| aw-zjjaf w-dzdz+2 ffaF u: dmdz (13b)
S

Ui e o T e e ot % 2 A R SR PO
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Two problems of variation can now be stated. - Intheﬁmtplaoehmltedparbsofthemrfwes
may be at our disposal, over which the vertical lift 4 and the horizontal transversal foroe B
may have any distribution. Only the total lift ."

v "fff (z,2) dmdz-oonst : o _ . (8b)
willbegiveninthiscase. ' S 7 1 7
mll g ’ . ':«v;} .‘__} { R |

" ‘weconst.=w, w=o . - ashy
mtheeondmon for the leastdng o .

If, however, the lifting parts are sxmxhr to lmes, there is generally one other condmon to -

fulfill. It is then required that the lift d.xsappear everywhere along the direction of t.he aerofoils.
That is to sy,
_fsmﬁ Foosﬂ-o by o (34

RN

where 8 is the angle of mchnatlon of the aerofoil to the honzontal X-ms In order to add the
new requirement (34) a second Lagrange constant » is mtroduced The condmon for the lent.

drag is now _ e SR

7 w+)‘+c—EE'f°'_u—sin_“—§*° R (34&)
and after the elimination of 4 ‘ - o v
w cos B+u sin S=w, cos § (15¢)

"tbeeonst.sntZ)‘bangreplacedby —1w,, a8 before. In words: S

fal”tﬂmgelcmmtcuremmtramveru plam,thecomponmofthavelomtyperpmdmdnr

to the wings, produced by the longitudinal vortices, must be proportumal at all lifting elcmenza to
the cosine of the angle of lateral inclination. - o0 ' ’mz:::;

5. LIFT DISTRIBUTED AND DIRECI'ED lN ANY MANNEB.
The results obtained previously can be genera.hzed not only for hftmg elements distributed

"in s transverse plane but also for lifting elements distributed in any manner in space. That

part of the total drag resulting from the transverse vortices is, in the general case
4rpu'[fffff @y Z)f(Em r)“"' dzdydadgd,,dr

+ffffffmz,y,z)F(s,»,r)udzdydzdrdndr]

(l'h)

‘Both terms have the same form as the mtegm.l in (17). The demonstration for (17) therefore

applies to both. In the general case also the total drag can be calculated from the longltudma]
vortices without t.akmg into oonsxderanon the t.mnsverse vortwes :

4”.;[.[ f fffff (=, M 2 f&n) Wr d«dydszJnd;
.”ffffF 9, 2) F(Ermﬂ ¥, dadydedidnds

ffff f ff @ 1,2 F' (6 D) ¥, dodydedidndy - ‘ (229

-[ff f ] Py af Guik drdydzded»dr]

In this as in (20), : 0.,
: ' oot

‘f‘ E=2 5 Pt z)=+i;'-re~w—z>i

a

Ly
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The first two terms in (22a) have the same form as the right-hand side of (22), and the same

comclusions are therefore valid for each. It can be proved directly for (22a) as for (22) that
each of the two double integrals is independent of the longitudinal coordinates of the lifting
elements. . This proof can now be extended over the last two integrals of equation (22a).

The third integral, after changing the variables, becomes =

o [SSEISS @y ) F (6 0, 2) g dadydedidndg = 35)
 HIIIf G D) F (5, y, 2) ¥ didndrdadyde ‘

whefe
. N T | .“..‘» ',‘ .
o WM™ f?—sda; B=(—2)+ (- + (¢ —2)?

N_ow,‘igfz F’ be chosen as the integnbie factor and be partially integrated with respect to z.
SIS G D P @y, ) f Bdedndsdadyde.

- As in the previous cases, the second integral to be expected vanishes since f as well as F
disappear at the limits of the integration. Next % Y= — géi,is chosen as the integrable factor
and partially integrated with respect to z. By ¥,, by analogy, is meant

oy ,:uv\—u ‘.,.‘ .o ,‘ ;.'.fu,:«:i-v' h v‘lv. L';:-‘::—;"f!—.—;—gda
- ‘ . '. . ) “ - . v '. . .
- SIS @y F D) v dzdydzdidnd; = (37)
L SIS @ 0 F (5, 2) bedtdndidadyde. | |

Nov-v ¥, may be transformed, the variable s in the defining equation being replaced by n+y-—s.
The result is that ‘ :

B el S R A

‘It is seen that the integrand a.greeé with that of the defining integral ¢,. Therefore, and since

the right-hand side of (37) contains the same function under the double integral as the fourth
turp in (22a), this fourth term can be combined with the transformed third member. This

gives v oy e e i
SEISIS 1 @y, 2) F? (6 n, §) ydadydadidnds + 38) -
 JISSIIE @ 1 @ 0 dadydededndr = | .
‘ J‘IIIIIF(I’ y’ z)f, & $) (‘ﬁ:"-\zx)dlddedEdﬂdg‘

where A .
R R
Y o e = I e

!P;—J; and therefore the two sides of (38) are independent of y. This is therefore demon-
strated for the whole right-hand side of (22a).

et b ekl e
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Ingeneul it can therefore be:saids % i 147 v o gt o’ s e dede A
= The total mnstam 8 alwaya wdepmdmt of ﬂw Zonguudﬂwl coordzmta qf tke ltjnngelemm '
‘And further: ~i~v - i ¥ ;
: The most fmmble dwtmlbutwn oj ﬂw Z-g‘t, unth raferm to the total drag, occurs’ whon ﬂm i
also the case for the projection of the lifting elements on a transverse plane. . A
’ That is to say,all of the lifting elements are projected on a plane perpendxcular to the
direction of flight, and any elemgnt o obta.med has a lift equal to the sum of the lifts of a.ll llft.mg
elements pro;ected onto ituiafuity A 3L e AT et a0 '

o e
6. DEI‘ERMNATION OF THE SOLUTIONS.

The previous demonstrations show that the investigation for the dxstnbutxon of lift’ whlch :
causes the least drag is reduced to the solution of the problem for systems of aerofoils which are
situated in a plane perpendmu]ar to the direction of flight. In-addition, the condition for least
drag (15c), which becomes the condition of uniform downwash (15) if the lift is vertical, leads
© to a problem which has often. been investigated in. the theory of two-dimensional flow w1t.h 8
logarithmic potentml The flow produced within the lifting transverse plane by the longitudinal
vortices ongmatmg in it is,.indeed, of this type. Each such vortex produoes a distribution of
velocity such as is produced by a two-dimensional vortex of half its intensity, and the whole
distribution of velocity is obtained by adding the distributions produced by the longitudinal
~ vortices. The potential flow sought is determined by the condition of (15c). Let it be com-
bined with the flow of constant vertical . upwa.rd motion = —w, The resulting flow satisfies
the condmon at the bounda.nes

N R R LR SR I v S Y {\\fht R T PRI A
) ‘ wcosﬂ+psmﬁ-0

k PN . .- .
A Fiftne s T b Do v s
i i .\yr RSt B R .

. ‘ o
and there results, for the case of hftmg lines:
. The two dzmenswnal potential flow is-of the type that mrclea/thc l@ftmg Zmea, and at @ great
distance the velocity is directed upwards and has'the value w=—1w, = °

Within lifting surfaces the velomty is zero* aecordmg to the condmon (l5b), and the ﬂmd
. therefore flows around the sontouk. bt i2 ¢ 30 N i o Y RARERE

The intensity of the longxtudmal vortices at any point is twice the rotation of the two
dimensional flow. In the case of the lifting lines, therefore, the density of the longitudinal
vortices is double the discontinuity of velocity from one side to the other. The intensity of the
transversal vortices is determined by integrating the’ Jongitudinal vortices along the aerofoils
and therefore equals twice the difference of the velocxty-mtegra.l produced on the two sides of
the aerofoil. Now the mtegral of the velocxty produced is 1dantlca.l with the potential and
hence it appears: R

The density of thc LR perpendwular to the Z@ﬂmg line is pmportwnal to the ducontmmty of
potentwl qp, @y, and has the value . T

FE W-m(ﬁ ) U

Yiooyy - ” S o

Hence the total hft obtamed by mtegratmg over a.ll aerofm‘ls' ;s' .
"2”09‘].(% ¢x)d15 .-

VAT e A G, P RPN ¥ {,/.w‘; a1

' L (41)
A &‘._-'._.'\\‘\4!1 Y -!

Sometimes a tra.nsformatlon of this equatlon is useful In order to obtain it, suppose that
all of the lifting lines are divided into small parts. Then, on the two ends of each hftmg element
there begin two inverse longitudinal vortices, the effect of which on a distant point is that of &
double vortex. Their velocity-potential ¢ and their stream function y may be combined in the
complex function ¢ +ip, and, not considering the éxistence of a parallel flow, which is without
any importance in the calculatlon, this complex function has the form for a lifting line,

(dA+dB  pens

z z‘ ‘. ‘& '?’ 13- 1 BEENSIT (42)

a9 g =

. E P E

s g 2o i T .- o . 0

L M U e Y i e e e . . e i o R Yy . R I oL T .
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where z represents z + iy and 2, =, + ¥, Z, and ¥, being the coordinates of the lifting elements of
theline. For a lift distributed over areas a similar equation can be formed. The integration of

(42) gives

G e g [HREE (422)

- "Novi the residuum of the integrand at infinity is 44 +idB and therefore the residuum of the
integralis A+iB. Therefore the expression can be written. o

S

S R ~.»i~;; Sy «»A;2v.,pR [Res(vl*ffv)] ) o h ‘ (41sa)

where the last part means the real part of the residuum of ¢ +i¢ at infm‘ity. In the most im-
portant case of horizontal aerofoils the residuum itself is real and can be used directly to calcu-
late the lift. -The density of drag at any point is proportional to the perpendical component of

. the density of lift and is W’= 2. 4, from which results W="°. 4. Making use of (41) one obtains

L)
I U | '
We A :
L T 20 [fer—e (43)
N T S S S S X 1 w0, BERE
e e T ey "W'f-A’%.’pR[Res W+10)]- - (438)

. The integral in the denominator of (43) represents an area characteristic of the system of

- _ aerofoils investigated. Frequently the easiest method of calculation is to assume from the
.. beginning the velocity w, at infinity to be unity. : o

""" The case of the lift continuously distributed over single parts of areas is derived from the

~ preceding one by passing to the limit. Since the vertical velocity w disappears at all points in

the lifting surfaces, the velocity is zero at all points and the rotation vanishes.
Therefore, in the case of the most favorable distribution of lift, all of the longitudinal vortices

from the continuously lifting areas begin at the boundaries of the areas.

Equstions (43) and (43a) remain. The distribution of lift is indeterminate to a certain

- extent. On the other hand, it is possible to connect the points of the contour having the same

potential ¢ by strips of any form, and it is only necessary that the lift be always perpendicular
to the strip and its density have a constant value along the whole strip. According to equation
(40) this equals the difference of the potential at the contour between the two borders of the
‘'strip. Worthy of note is the special case in which all of the strips run along the contour, thus
coming again to the case of lifting lines. It appears that:
- Closed lines have the same mimimum of drag as the enclosed areas when continuously loaded.
Especially important are those symmetrical contours which are cut by horizontal lines in
only two points.. With such the limitation to vertical lift does not involve an increase of the
minimum drag. For this case it appears that: -
The density of the vertical lift per unit area must be proportional to the vertical component of

 the velocity of the two-dimensional flow at the point of the contour of the same height 2. It s

The corresponding density of dragis - - .
LA “!, PR B EE S P dW d" R s . . (45)

iy
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T g T e b T e L o G - T

S & [ I : 7. EXAMPLES OF CALCULATIONS. . ;...

Examples of calculation of the previous demonstrations can be based on any ca.lculnted
two-dimensional potential flow around parts of lines or areas. The simplest flow of the first
kind is that around a single horizontal hne Itleads to the problem investigated at the begin-

mng of this paper.

. In this case the potential is the real part.of ¥’ —1, where ?. denotes z+1z. . The hft.mg ‘

lme joins the two pointa ze0, z= — I and g=0, z= +1, and has the length 2. The velocity at
infinity is w=1. The discontinuity of potential along the lifting line is ¢, — ¢, =21=2. The
density of lift is distributed according to the same law, therefore if plotted over the span the
densxty of lift would be represented by t.he balf of an elhpse.
Themmxmumdragls o ) , _
RN A Ty 1 S ey LS T .\\m T :

O AR Wedi L W . (46)

I, instead of the value 2 the span had the genera.l value b t.he minimum drag would be
' 1 . .
- A ¢ ;
W=4 Fr ,,’—5-, (47)
This same result has been obtained by Prof. Prandtl by another method.®
The simplest example for a lifting vertical area is the circle. Let its center coincide wich
the origin of the system of coordinates. Then the potential of the flow around this circle is

EC SR B T R T PR i N N T et dy sl

¢-—‘+z ) :‘.'::‘);"“ '.li] '.'.2. 'I“ .. | (48)

where r-—Jz’ 425 At infinity Wo=1. Under the condxtlon of and a.coerdm.g to equatlon (40)
thedensxtyofhftls o iy b

-

A - ,]QA _2‘,‘,3;(;34_,) ‘ , ! ,.;:-;. (49)
This results in a constant denmty of hft of A’-2 Therefore the dra.g is" SR f:"«_ A
R ’ . - 1 \l . ’. l 1, b e L -'“,, ‘ '. .
. . W—A'. 2u.9 J'f2dzdz -A oipl, B ‘”;} :"_ ) ;“’ i o (50)
The double mtegra.l is to be taken over the clrcle., If the general £ase. for t.he dlameter
equal to D be consxdered, then the lea.st ch-o,g is o e et e
1 [ T OO § __"”_‘” )
. o . o . : . 1 R S , Vb \. r :  ‘ "1..,‘
LI Voer il . LR . ‘7‘:.7 W-A’ - ;’-—]; o ma . - .Jy'“v ."i Sga % v (51)

Hence in reepect to the minimum drag the mrole is eqmvalent bo a hftmg hne havmg
a length /2 times the diameter.

A lifting circular line would have the same minimum drag a8 the clrcular area.

This result was also obtained by Prof. Prandtl by ‘another method.¢ A reduction of the
original problem of variation to the two-dimensional flow sometimes enables a survey of the
result to be made without calculation. For instanoce, let a third aerofoil be added between the
two aerofoils of a biplane having a small gap. (The gap may be about one-sixth of the
span.) Then, in order to find the most favorable distribution of lift, the double line about
which the flow occurs is to be replaced by three hftmg lines. Now, in the region of the middle
lifting line the velocity is small, even before this line is introduced. Therefore the discontinuity
of the potential along the middle line is very much smaller than that along the others. Hence
it results that the middle aerofoil of & triplane should lift less than the other two.

 Firat communication concerning t irin Zeitachrift fiir Flugtechnik und Motorl, 1914. B. 239, hurwtebyheu.
‘surecbnhchenmhtedul’lummdnenlbd.nm&
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.8. PROCEDURE FOR THE CASk <.¥ FLUIDS WITH SMALL VISCOSITY.

" The preceding results do not apply so much to the ~«lculation of the most favorable distribu-
tion of lift as to the calculation of the least drag. For i . opears, and the results are checked
by calculation, that even considerable variations from the conJ'tion of most favorable distribu-
tion of lift do not increase the drag to any great extent. Usually the minimum drag can be
considered as the real drag of the system of aerofoils and in order to allow for the effect of
friction of the air it is sufficient . to make an addition. This addition depends chiefly upon the

‘aerofoil section; it also depends, emitting the Reynolds Number, only upon the area of the

wings and on the dynamical pressure. It is independent of the dimensions of the system of
wings themselves. It may be useful to have a name for that part of the density of drag, inde-

. pendent of the friction of the air, which results from the theory developed in this paper. It is

called the ‘“induced drag.” Generally it is not the drag itself but an absolute coefficient which
is considered. This coefficient is defined by

Cm-gi%: ‘ (52)

where W; is the drag previously denoted by W, ¢ is the dynamical pressure v,.0/2, and F is
the total area of the wings. Equation (43) can now be written
LF
Cug ™ :&., DB (53)

where ¢, is the lift coefficient 7;1? corresponding to ¢,. The greatest horizontal span b of the

- system of wings perpendicular to the direction of flight is arbitrarily chosen as a length char-

ey e

acteristic of the proportions of the system, % is a factor characteristic of the system of aero-
foils and has, according to the preceding, the value.

It has a specxal physical s1gmﬁ¢ IR e
Under the same conditiohid a s'mgle aerofm’l unt]l a span of ¥ times the mazimum span of a
system of aerofoils has the same. 'mduced m@mmum resistance as the system.

S ﬁ*REﬁNEIV!ENT OF THE THEORY.

The demonstrations given rest on the assumption that the velocities produced by the
vortices are small in comparison with the velocity of flight. The next assumption, more ac-
curate, would be that only powers higher than the first power could be neglected.

In this case the solutions just found for lifting elements in a transverse plane can be con-
sidered as the first step towards the calculation of more exact solutions. The following steps

raust be taken: The exact density of dragis W= A’

produced at the lifting elements by the transverse vortmes. It can be calculated exactly

- ~enough from the first approximation. Now, the condition of least drag is

Bt
Y s

™

w- Co8 B+;4 sin B=1w, cosﬂ(1+ ) (15d)

v.nd the flow of potential, accordmg to this condition at the boundary, is to be found. Compared
with the first approximation the density below is in general somewhat increased and the den-
sity above is somewhat decreased. The minimum drag changes only by quantities of the
second order.

R O T T 2 T RIS IR PR 5
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If the lifting elements are distributed in three dimensions a similar refinement can easily
be found. In this case there is to be taken into consideration a second factor which always
comes in if the differences of the longitudinal coordinates of the lifting elements are consider-
able. The direction of the longitudinal vortices do not agree exactly with the direction of
flight, but they coincide with the direction of the velocity of the fluid around the aerofoil.
‘They are therefore somewhat inclined downwards. A better approximation is obtained by
projecting the lifting elements not in the direction of flight but in a direction slightly inclined

ﬁpwardé from the rear to the front. This inclination is about 2—;'3-‘- Except for this, the method
of calculation remains unchanged. - ’ ‘ '
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